Global well-posedness and decay of the 2D incompressible MHD equations with horizontal magnetic diffusion
نویسندگان
چکیده
This paper concerns two-dimensional incompressible magnetohydrodynamic (MHD) equations with damping only in the vertical component of velocity and horizontal diffusion magnetic equations. If field is not taken into consideration system reduced to Euler-like an extra Riesz transform-type term. The global well-posedness remains open problem whole plane R2. When coupled field, stability for MHD R2 have yet be settled too. here focuses on space domain T×R, T being a 1D periodic box. We establish 2D anisotropic system. In addition, algebraic decay rate H2-setting has also been obtained. solve this by decomposing physical quantity average its corresponding oscillation portion, establishing strong Poincaré-type inequalities some combining symmetry conditions imposed initial data.
منابع مشابه
Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations
The present paper is dedicated to the global well-posedness for the 3D inhomogeneous incompressible Navier-Stokes equations, in critical Besov spaces without smallness assumption on the variation of the density. We aim at extending the work by Abidi, Gui and Zhang (Arch. Ration. Mech. Anal. 204 (1):189–230, 2012, and J. Math. Pures Appl. 100 (1):166–203, 2013) to a more lower regularity index a...
متن کاملThe 2D Incompressible Magnetohydrodynamics Equations with only Magnetic Diffusion
This paper examines the global (in time) regularity of classical solutions to the two-dimensional (2D) incompressible magnetohydrodynamics (MHD) equations with only magnetic diffusion. Here the magnetic diffusion is given by the fractional Laplacian operator (−Δ)β . We establish the global regularity for the case when β > 1. This result significantly improves previous work which requires β > 3 ...
متن کاملGlobal regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion
Whether or not classical solutions of the 2D incompressible MHD equations without full dissipation and magnetic diffusion can develop finite-time singularities is a difficult issue. A major result of this paper establishes the global regularity of classical solutions for the MHD equations with mixed partial dissipation and magnetic diffusion. In addition, the global existence, conditional regul...
متن کاملGlobal well-posedness of incompressible flow in porous media with critical diffusion in Besov spaces
In this paper we study the model of heat transfer in a porous medium with a critical diffusion. We obtain global existence and uniqueness of solutions to the equations of heat transfer of incompressible fluid in Besov spaces Ḃ 3/p p,1 (R ) with 1 ≤ p ≤ ∞ by the method of modulus of continuity and Fourier localization technique. AMS Subject Classification 2000: 76S05, 76D03
متن کاملGlobal well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum
In this paper, we study the global well-posedness of the 2D compressible NavierStokes equations with large initial data and vacuum. It is proved that if the shear viscosity μ is a positive constant and the bulk viscosity λ is the power function of the density, that is, λ(ρ) = ρβ with β > 3, then the 2D compressible Navier-Stokes equations with the periodic boundary conditions on the torus T2 ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2023
ISSN: ['0022-2488', '1527-2427', '1089-7658']
DOI: https://doi.org/10.1063/5.0155296